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Introduction

In the early 17th century Johannes Kepler (1571-1630), working with his pre-
decessor, Tycho Brahe’s, detailed record of planetary positions, determined
three basic laws that elegantly encapsulated the motion of the planets:

e Each planet orbits the Sun on an elliptical path with the Sun at one
focus.

e An imaginary line connecting a planet to the Sun sweeps out equal
areas in equal times.

e The time (T') a planet takes to orbit the Sun squared is proportional
to the average distance from the Sun cubed. Geometry dictates that
the average distance is equal to half the long axis or, semi-major axis
(a), of the ellipse. Expressed in symbolic form: T2 o a?

Kepler’s empirical derivation described planetary celestial wanderings very
well but shed little light the underlying principle that should cause the plan-
ets to follow such paths.

Later in the century, Sir Isaac Newton (1642-1727) had an insight that
was destined to revolutionise celestial mechanics. Newton realised that if the
force that made objects fall to ground, now called gravity, extended all the
way to the Moon it could keep the Moon orbiting the Earth. Ultimately,
Newton determined mathematical equations that captured the nature of
gravity and motion thereby providing a solid physical basis for Kepler’s laws.
The gravitational attraction (F') between two massive bodies is proportional
to both masses (m; and mg) and inversely proportional to the square of the
distance (r) between them, or:

- Gm1m2

F=
T2

The constant term, GG, is known as the universal gravitational constant.



Gravity, the dominant long distance force in the universe, is sufficient to
explain how the solar system stays together and many interesting phenomena
that have been discovered. Some of the dynamic effects of gravity in the solar
system are:

e Tides. Tides are the result of a difference in gravitational attraction
to an object experienced at different locations. The most obvious
manifestation of tides are the twice-daily fluctuations in the Earth’s
oceans. Caused by the combined forces of Moon and Sun, the Earth’s
oceans exhibit a bulge on the Moon-ward and far sides of Earth. On
the Moon there’s a matching bulge in the solid rock. Tidal effects exist
throughout the solar system.

e Spin-orbit Coupling. A coupling between an object’s spin and its orbit
is a side effect of tides. Over time, tide induced torques will cause
orbiting objects to slowly change their axial rotation. The change in
rotation tends toward keeping a single side, usually the most massive
side, permanently facing the orbited object!; rotating once for each
orbit. Spin-orbit coupling is prevalent in the solar system, with all but
a few major satellites exhibiting tidally locked rotation [7, p. 9].

e Orbit-orbit Resonance. Orbit-orbit resonances, or mean motion reso-
nances, arise when two (or more) bodies orbit another so that the ra-
tio of their orbital periods are close to an integer ratio. Symbolically:
Ty : T5 = p1 : po where p; and py are integers. The periodic alignments
of these objects provide repeated disturbances that can have marked
effects on long term orbits. Such arrangements are found throughout
the solar system particularly between Jupiter and the asteroid belt,
and amongst the satellites and rings of the Jovian planets.

e Orbital Precession. The presence of aspherical bodies and external
forces from other orbiting bodies causes the slow rotation of elliptical
orbit orientation over periods = 10° years: orbital precession. The
most notable precession in the solar system is that of Mercury which
was explained, at least to a reasonable approximation, by Newton’s
laws. A better approximation required Einstein’s General Theory of
Relativity which took several hundred years to come along.

Newton’s formulation of gravity provided straightforward analytical an-
swers in the case of two bodies free to move under the influence of gravity.
It did not, however, take long to realise that solving the equations of motion
for more than two bodies was difficult and, for the most part, impossible. In
these systems each object is acted on by forces from every other object and,

! Actually facing the empty focus in the orbit, but the near-circular nature of the bulk
of orbits makes this a fine distinction.



as the object moves, these forces change direction and magnitude. Many
famous mathematicians have tackled what has come to be known as the
N-body Problem and its relative the Three-body problem: Euler, Lagrange,
Laplace, Jacobi, Le Verrier, Hamilton, Poincaré and Birkhoff [7, 6]. There
remains no general analytical solution to this problem although interesting
results, such as a figure-eight orbit by Chenciner and Montgomery [2], are
announced from time-to-time.

Numerical Simulation

Given the intractable nature of the N-body problem the only practical
method of analysing orbital motions for moderate or large N is by com-
puter simulation. The general theme of numerical simulations is to convert
the equations governing the dynamics of the system to a form suitable for
calculation. For N-body simulations the equations must be converted to a
discrete form that allows each successive set of object positions and velocities
to be determined from the preceding set. These successive system states are
usually separated by a small increment in time and the simulation process
iterates over a multitude of these steps to determine the long term result.
Modern digital computers are good at performing high volume numerical
manipulations at high speed and are therefore well suited to this task.

Perhaps the most obvious approach to the N-body simulation is covered
in many introductory courses on numerical methods. This approach requires
only Newton’s laws (in vector form) and basic physics to formulate.
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Figure 1: A typical multi-body situation. Object m1 is attracted towards
each of the other objects which are, in turn, each attract to all the oth-
ers. Each body will move under the influence of these constantly changing
attractions.

Consider the situation depicted in Figure 1 in which particle m; is being
attracted directly toward meo with force Fio, mg with force Fiz, and so on.
Direction is important in this situation so we need to use the vector form of



Newton’s law?:
F— Gm1m2
r|3

The resultant force acting on particle m; from the other particles is:

Gmlmg Gm1m3
F, = 7 T12 3 T13
r12] r13]

ot (1)

Since the same summation needs to be applied to each particle in turn, we
can write a more general form of Equation 1 for particle ¢:

F; = Z it s (2)

r
= Iyl Y

To convert this resultant force into motion Newton’s third law of motion
(Equation 3), which tells us that a force acting on a mass will cause an ac-
celeration, is used. Solving for the acceleration and substituting Equation 2
for F' leads to Equation 4.

F = ma (3)
a; = Fz/ml
1 ZGmimj
= . 13 Lij
1]7&1 ’r1]|
Gm;
= > ’r|é Tij (4)
i

The acceleration calculated at Equation 4 is the rate of change of velocity
which we approximate with a straight line connecting two discrete velocity

values:
_dv AV vpp - vy
T T AT At
where subscripts n and n 4 1 indicate consecutive time steps. Rearranging
we determine that:

Vpil = vy +aAt (5)

Making the assumption that v is constant over the time increment At, and
applying the same approximation for the rate of change, leads to the follow-
ing position equation:

rpi1 =y + v At (6)

All the elements necessary to fill out the general sequence of events in
simulation are now present. For each particle:

2The vector form is obtained by multiplying by a unit vector r/|r| in the direction of
the force.



Calculate the resultant acceleration caused by all other particles (Equa-
tion 4).

Determine the new velocity (Equation 5).

e Determine the new position (Equation 6.

Plot or record the new data points, increment the simulation time by
At and repeat.

Underlying the apparent simplicity of this approach outlined above are
some disadvantages that make it unsuitable for large values of N. Chief
amongst these is that the number of calculations required in each iteration
is O(N?). For a simulation of the known solar system objects N approaches
100,000 and the load becomes unworkable. The amount of calculation re-
quired can be reduced by:

e Scaling masses, velocities and positions so that the constant G or some
other element is eliminated.

e Assuming the objects are coplanar thereby removing one coordinate
axis.

e Assuming that distant objects have little effect or can be more roughly
approximated; a hierarchical approach.

e Calculating the motions at the vertices of a grid then applying these
figures, or interpolated values, to all objects in the same grid square;
a grid approach.

e Using a hybrid of the hierarchical and grid methods.

The grid and hierarchical approaches are often used with a more complex
mathematical model of gravity. Some models treat gravity as a potential
field (Poisson equation) and distribution of mass as a density function. Mod-
els may make use of Hamiltonian dynamics which simplifies the study of
some motions at the cost of restrictions on math that may be used in uni-
son. For example, Hamiltonian systems maintain a number of invariant
characteristics that can be destroyed by direct integration methods. Sym-
plectic integration methods are specially designed to support simulations
using Hamiltonian dynamics.

In any numerical simulation accuracy and stability must be carefully
guarded. In the accuracy of the direct summation described above, in which
errors are accumulated over time, is governed by the size of the time in-
terval (At) and the assumption of constant velocity during the interval.
Figure 2 shows a simplified example of a small object dropped vertically
to Earth (constant acceleration) with two discrete approximations. Clearly



Comparison of Discrete Approximations in Simple Freefall
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Figure 2: Difference between true motion and discrete approximations (0.5
and 0.1 second increments) for a small object dropped vertically to Earth
(constant acceleration). Clearly the smaller time increment furnishes the
better approximation.

the smaller time increment figure gives a better approximation of the true
motion but comes at the cost of more calculation. Varying the time step as
distance between objects decreases is one possible enhancement to the sim-
ulation. At variation need not be global, the bodies that are close can have
several iterations at smaller increments applied between steps in the global
simulation. For these extra iterations the forces caused by distant bodies
are assumed fixed and only the motion of the close bodies are considered.
Alternatively, a better approximation may be made by assuming constant
acceleration over each time interval:

aAt?

rp+1 =Ty + vV, At + 5

Other methods, that don’t rely on smaller time increments, have been de-
vised to improve accuracy. Predictor-corrector methods are one such scheme
that uses the weighted (h, often 1) average of more than one estimated value
to derive the next. Expressed in terms of the example simulation, r, and
v, are used to determine a predicted position and velocity for the particle:

Vpred = Vn+apAt

Tpred = Tp+ VAL



The acceleration at the predicted position is also calculated. The new posi-
tion and velocity, ry41 and v,41, are calculated:

h

Vil = Vp+ §(anAt + ayreq At)
h

rpi1l = Tp+ §(vnAt + Vpred At)

In the example of Figure 2 this scheme will determine a series of points on
the ideal curve. While there is extra calculation involved in making and
evaluating predictions, the extra load must be compared to the effect of
decreasing the time increment to achieve the same accuracy.

The ability of the processing system to handle the required mathematical
precision is also a factor in overall accuracy. In the calculations outlined
earlier the system fails as |r| approaches zero, with F' approaching infinity.
Often a small factor is added to the denominator of Equation 4 (|r;;|®+¢) to
ensure that it does not become zero. For extreme distances the gravitational
force will be extremely small which may result in numeric underflow and loss
of precision problems.

Experimental Aims

One of the tasks assigned to the Swinburne University Supercomputer Fa-
cility is the simulation of dynamic systems including N-Body systems such
as the solar system. For this project a simulation has been made available
through a WWW based interface. The simulator’s main characteristics are:

e All orbits are coplanar, major axes collinear, and perihelion occurs on
the same side of the Sun (to the right in the plots).

e Initial planet positions alternate left to right of Sun, with the first on
the left.

e A 2nd order predictor-corrector integration system[5].
e Scaled masses and distances.
e Up to nine planets with default parameters for the solar system.

e Simulation accuracy and period determined by the interplay of two pa-
rameters. The desired number of steps required to show the innermost
orbit in the solar system is used to set the time increment: larger inner
step counts correspond to small time increments. The total number of
steps to run the simulation for determines the total running time.

The broad aim of the experimental part of the project is to use the pro-
vided simulation to explore the dynamics of the solar system. In particular,



the possibility of creating an unstable planetary system is to be investigated.
Of the gravitational effects in multi-body systems (that the simulation can
handle), resonant orbits and close approaches provide the most likely sources
of physical instability. The choice of simulation parameters may lead to in-
stability or inaccuracy that’s not part of the physical system; this is also to
be addressed.

There are three parts to the investigation:

e Show the effect of different time increment on the accuracy of the plot-
ted orbits in the absence of large gravitational perturbations. These
simulations will be used to select simulation parameters for the reso-
nance and close approach experiments, and determine a baseline mea-
sure of the approximation error.

e Show the effects of resonance in the asteroid belt, using a (1) Ceres
sized object, placed at and around the 2:1 Jupiter resonance distance.
These simulations are expected to show the presence of physically un-
stable orbits in the asteroid belt region.

e Show the effects of a close pass of Jupiter by the same asteroid at
subtly different pericentre distances, and with different simulation pa-
rameters. This is expected to highlight sensitive dependence on initial
conditions and deleterious effects of poor numerical simulation param-
eters on systems with such sensitivities.

Results

To demonstrate the importance of the time increment in simulation accu-
racy, and determine a baseline accuracy, two basic runs were completed.
Each simulation includes only two asteroids as detailed in Table 1, with one
of the asteroids standing in for Jupiter and the other being set up at the 2:1
Jupiter resonance distance. These initial settings have been chosen to min-
imise gravitation interaction between the bodies leaving mainly numerical
approximation errors. Run 1 (Figure 3(a)), with 100 steps to approximate
the orbit of the inner asteroid (red) shows a markedly less defined orbit
than Run 2 (Figure 3(b)) with 500 (maximum allowed). While the high
resolution run does show a slightly less than perfect elliptical orbit for the
inner asteroid, the orbit for the de-facto Jupiter (green) is tightly contained
and well shaped. In contrast, the low resolution run’s determination of the
de-facto Jupiter’s orbit wanders and is uneven.

The following resonance experiments will concentrate on the inner aster-
oid with a Jupiter of realistic mass in place. Any behaviour exhibited by the
simulated asteroid could be the result of either approximation errors or real
physical effects. If these numerical experiments were done with the lower
inner orbit steps value they would be seriously affected by approximation



error. Consequently, the resonance experiments will be run at maximum
resolution with the baseline error being that shown in Run 2.

Orbital resonance in the asteroid belt was explored with a series of five
simulations with the parameters shown in Table 1 as Runs 3 to 7. The orbit
of Run 3 lies in the Kirkwood gap where the orbital period is half that of
Jupiter. The 2:1 resonant orbital distance, 3.278 AU, was calculated using
the formula:

3
A Asteroid = CLJupiter/\/ZL

which is directly derived from Kepler’s third law. The other orbits, either
side of the resonant distance, were spaced at 0.075 AU increments. The
results are shown in Figures 4 to 8 with Jupiter appearing in green and the
asteroid in red.

Figure 4 is the result for an object placed in an orbit with a period half
that of Jupiter. The orbit of the asteroid very quickly deviates from the
initial near-circular state so that aphelion is driven as high as 3.7 AU and
perihelion as low as 2.75 AU. The average orbital distance seems to have
changed because the eccentricity required for the new perihelion (e=0.161)
would result in a slightly higher than observed aphelion. The maximum
aphelion and minimum perihelion are collinear with the Sun, consistent with
belonging to the same orbit. Assuming the same orbit then the average
distance, eccentricity, and orientation have changed to a=3.225 and e=0.147.
The alignment of of maxima and minima may, however, be an artifact of
over-plotting many varied orbits. Unfortunately, limited access to output
data means it’s difficult to determine if the maxima and minima belong to
the current orbit, or if the evolution of the orbit has stabilised. Clearly
though, the simulation shows that an asteroid orbit at the 2:1 resonance
distance is not stable.

The simulation assigned initial position for the asteroid is at aphelion in
superior conjunction with Jupiter. The first conjunction occurs one asteroid
orbit later with the asteroid and Jupiter at aphelion. Murray and Dermott
[7, Chapter 8] indicates that such an arrangement is unstable. If perfectly
aligned then there’s no net tangential force acting on the asteroid as it
passes conjunction. However, if the alignment is even slightly asymmetric
then a net tangential force acts on the asteroid. The force acts to increase or
decrease the asteroid’s angular momentum and mean motion with the result
that subsequent conjunctions are closer to perihelion. Once conjunctions are
occurring at perihelion there’s no longer a net tangential force. The asteroid
will continue to experience a radial force at each conjunction causing a delay
in reaching perihelion. The asteroid orbit will precess in the prograde sense?.

Inward in steps of 0.075 AU from the resonant distance are the pro-
gressively more contained orbits of Figures 5 and 6. The innermost orbit,

3Precession also results from orbiting an oblate object, like the Sun, but this effect is
not modeled by this simulation.



at 3.128 AU, is confined to a narrow region although it is still perturbed
by Jupiter (compare to Run 2 Figure 3(b)). This region coincides with a
marked concentration of asteroids in the asteroid belt around the orbit of
(24) Themis at 3.137 AU.

Movement in 0.075 AU steps outward from the 2:1 resonance distance
also leads to orbits less spread than at resonance. The improvement is less
marked than the change for inward movement. Figure 7 is only marginally
less spread than at resonance while Figure 8 is less contained than the equiv-
alent distance inside the resonant orbit. The outer distance corresponds to
a small peak in asteroid numbers in the region of (65) Cybele at 3.432 AU
[1, Ch 25. Asteroids].

Six simulation runs were made to explore the effects of close approaches
to the orbit of Jupiter. The parameters are shown in Table 1 as Runs 8
through 11. The simulations were run in pairs over a long (Runs 8, 10, 12)
and short (Runs 9, 11, 13) period to allow comparison of overall evolution
and the early source of variation. The orbit semi-major axis was chosen
so that it had no particular resonant relationship to Jupiter’s orbit and a
reasonable eccentricity would bring it close to Jupiter’s orbit. At least on the
first orbit, Jupiter would not come as close as these figures would indicate
because of initial starting position on opposite sides of the Sun.

Figures 9(a) and 9(b) show the simulation over long and short periods of
an orbit that passes within 0.25 AU of Jupiter’s at aphelion. The long term
trajectory of the asteroid varies quite dramatically from as low as 1.8 AU
out to the orbit of Uranus. The plot of the first orbits shows that several
orbits are completed close to the starting distance, but on the third orbit
the asteroid is drawn into two close encounters with Jupiter that propel
into an orbit not far outside Jupiter’s. Several orbits later the asteroid is
ejected further into the outer solar system. In general, each orbit seems to
be travelled several times before making a substantial change as a result
of interaction with Jupiter. Examination of the orbit at such times might
give the impression that the orbit was stable. Such a pattern is often a
characteristic of chaotic systems although it does not necessarily mean that
a system is chaotic.

A slightly closer approach (0.24 AU) is shown for long and short dura-
tions in Figures 10(a) and 10(b) respectively. The small change in proximity
to Jupiter’s orbit, roughly 4 times the Earth-Moon distance, has substan-
tially altered the short and long term evolution of the system. Excursions
into the outer solar system do not go as far as in the previous case. The pat-
tern of repeated traversals of similar orbits continues, with each outer loop
containing several passes. The short duration simulation of the seminal or-
bits show that quite large differences between Figure 10(b) to Figure 9(b)
appear very early in the simulation. High sensitivity to initial conditions is
a trait associated with chaotic systems.

To confirm the chaotic, or closed periodic, nature of these orbits would

10



require further analysis of the data output from the simulation. One method
that could be employed to depict the stability of the system is a phase space
plot. A plot of z versus & for y = 0 and ¢ > 0 will show a closed curve, or
curves, for regular orbits while a chaotic orbit will show scattered dots that,
over time, fill a volume.

Figures 9(a) and 10(a) show that the orbit of Jupiter is mildly distorted
from the crisp single line expected of the simulation. The accumulation of
small errors of a long simulation may be producing this spreading of the
orbit. To further investigate the effect of simulation parameters the earlier
close approach simulation for 0.25 AU (Runs 8 and 9) was re-run with a very
slightly smaller number of steps for the inner-most orbit i.e. a slightly larger
At. The results, at Figures 11(a) and 11(b), show a dramatically different
path over time and that the changes started very early in the simulation.
The change of number of inner orbit steps from 500 to 499 has changed
the entire simulated evolution. Clearly, simulation errors can become a
substantial issue when attempting to simulate phenomena that have chaotic
or sensitive regimes.

This result casts doubt over the accuracy of the simulations in Runs 8
through 11. It’s no longer clear whether the displayed behaviour is the result
of the physical system behaviour or numerical approximation and errors.
Indeed, only general characteristics seem to be trustworthy: close approach
to Jupiter can cause wild variation in trajectories of the asteroid. Re-running
the resonance experiments, Runs 3 through 7, with the smaller inner orbit
step count (499) shows no appreciable differences in gross properties allowing
a much higher degree of confidence that the behaviour is physical.

Conclusions

The insights of Kepler and Newton provided a basis for the understanding
of dynamics in the solar system and further afield. The problem of deter-
mining the behaviour of many objects free to move under the influence of
gravity has proven to be a difficult mathematical challenge. Since the advent
of the general purpose computer the numerical simulation of such systems
has become possible. Simulations can cover the full range of gravitational
phenomena from orbit determination to simulation of large scale structures
in the Universe.

Simulation of the motion of a small body at the 2:1 Jupiter resonance
shows that such an orbit is quickly altered. However, simulated orbits
slightly either side of the mean motion resonance are more stable. The result
does not seem to be extremely sensitive to simulation parameter choices and
can confidently be treated as close to the physical behaviour. Indeed, the
more stable orbits are mirrored in the asteroid belt by concentrations of as-
teroids around (24) Themis and (65) Cybele, while the absence of asteroids

11



at the resonance point is marked.

Proximity to Jupiter can be quite dramatic for a small body. Close ap-
proaches can to alter the orbit in ways that range from subtle to dramatic,
sometimes sending the object far out in the solar system. The simulation
shows a sensitive dependence on the initial conditions, both physical and nu-
merical, for close encounters with small changes making dramatic difference
to the long term trajectory of the small body. Further, the trajectories seem
to have varying periods of stability between dramatic alterations of course.
Both sensitivity to initial conditions and erratic changes in the system are
traits of chaotic systems.

The accuracy and stability of the simulation algorithms themselves must
be considered when using numerical methods. Making unsuitable approxi-
mations, choosing parameters poorly, or limitations of the calculating ma-
chinery can all play a part in the accuracy of simulation. The effects of
simulation errors may be small in comparison to the key phenomena but, in
a potentially chaotic system, small input differences can make large changes
in long term behaviour. The effects of accumulating simulation differences
are amply shown in the simulation (Runs 1, 12 and 13) used for this project.

Simulation is a powerful tool to aid in the understanding of the dynamics
of objects in the solar system. Provided the numerical model is well con-
structed, and parameters well chosen, it may be used to extrapolate both
forward and back in time to see our solar system evolve.
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(a) Run 1. Low resolution, 10000 steps at
100 steps per inner orbit
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(b) Run 2. High resolution, 50000 steps at
500 steps per inner orbit

Figure 3: Two asteroids. One asteroid is standing in for Jupiter while the
other is set up as for the resonance experiments that follow. The small
masses minimise gravitational perturbation leaving mainly numerical inac-
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Planetary Orbits
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Figure 4: Run 3. Asteroid at 2:1 orbital resonance with Jupiter. Starting
orbital distance is 3.278 AU, with mass of 0.0001 and eccentricity 0.048.
This region is called the Kirkwood Gap.
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Figure 5: Run 4. Asteroid 0.075 AU inside the 2:1 resonant orbit with
Jupiter.
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Planetary Orbits
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Figure 6: Run 5. Asteroid 0.15 AU inside the 2:1 resonant orbit with

Jupiter. This orbit corresponds with a large concentration of asteroids
around (24) Themis.
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Figure 7: Run 6. Asteroid 0.075 AU outside the 2:1 resonant orbit with
Jupiter.
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Figure 8: Run 7. Asteroid 0.15 AU outside the 2:1 resonant orbit with

Jupiter. This orbit corresponds with a small concentration of asteroids
around (65) Cybele.
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(a) Run 8. Long term simulation
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(b) Run 9. Short term simulation

Figure 9: Runs 8 and 9. Asteroid with average distance of 4.336 AU, ec-
centricity 0.2. The orbit approaches to within 0.25 AU of Jupiter’s orbit at
aphelion.
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(b) Run 11. Short term simulation

Figure 10: Runs 10 and 11. Asteroid with average distance of 4.336 AU,
eccentricity 0.202. The orbit approaches to within 0.24 AU of Jupiter’s orbit
at aphelion.
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(a) Run 12. Long term simulation
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(b) Run 13. Short term simulation

Figure 11: Runs 12 and 13. Asteroid with average distance of 4.336 AU,
eccentricity 0.2 simulated at lower resolution than Run 8. The long term
trajectory is significantly different.
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