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Introduction

Arguably one of the most useful global benefits provided by the U.S. De-
partment of Defense (DoD) has been the Global Positioning System (GPS).
The GPS provides worldwide ability to pinpoint positions, including alti-
tude, to within a few tens of metres. The general theory of operation for
GPS is relatively straightforward but the implementation must take into
account a number of effects related to the special and general theories of
relativity. This project describes the GPS and how relativistic effects are
accommodated within it.

Theory of Operation

Traditional means of locating oneself on the Earth involved taking bear-
ings and/or distances from known points, with the intersection of these
lines/circles providing location. This method, called triangulation, works
well in circumstances where the known points are visible and accurate maps
are available but fails in absence of known landmarks, e.g. at sea or poor
weather. The U.S. DoD required a more accurate and reliable system with
global coverage and all-weather ability, and funded creation of the GPS to
meet this requirement.

GPS extends the older concept of navigation into three dimensions by
providing an elevated set of known reference points, satellite-borne, and
means to measure their distance. Knowing the distance to a single reference
point, fixes the observer’s location somewhere on the surface of a sphere cen-
tred on the reference point. Adding the distance to a second reference fixes
the observer’s location to the circular intersection of the two reference point
spheres. The addition of a third reference fixes the location of the observer
to two possible points on the circle, one of which is usually unreasonable i.e.
too high above ground (Figure 1). A fourth and further references may be
required to resolve the location to a single point and reduce error.
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Figure 1: Ranges from three satellites coincide at two points, only one is
usually sensible as a location but a fourth range can be used if needed.

The GPS reference points are a constellation of 24 satellites (21 operat-
ing, 3 spares). There are four satellites in each of six equally-spaced orbital
planes inclined at 55◦ to the equator of Earth. The nominally circular or-
bit of 10,988 nautical miles (20,350 km) altitude [1] provides the satellites
a 12 hour orbital period. From any point on Earth between five and eight
satellites are visible at any time (closer to the poles they may be low on the
horizon). The orbits also give the satellites a ground track that is close to
north-south.

Distance measurement in GPS is based on one of the underlying postu-
lates of special relativity: “The speed of light in empty space is an absolute
constant of nature and is independent of the emitting body” [2]. By deter-
mining the time-of-flight of a signal sent by the reference satellite, and using
the known speed of light, distance can be determined.

Light travels at 299, 792, 458ms−1 and will cover the satellite-Earth dis-
tance in as little as 70 milliseconds - an easily measured interval. Light,
however, covers the last 100 metres in approximately 330 nanoseconds. In
order to determine distances to 100 metre accuracy therefore requires deter-
mination of the time of flight to better than 330 nanoseconds. The obvious
means of measuring the time-of-flight requires clocks on board the satellite
and in the receiver to be synchronised to within the required tolerances.
If the satellite transmits a signal derived from its time then determination
of time-of-flight by the receiver becomes a case of subtracting the time of
reception from the transmit time as encoded in the received signal.

All GPS distance measurement relies on synchronised clocks that remain
tightly synchronised over long periods. The tight synchronisation of clocks
between Earth and satellites is more complicated than it first seems. There
are three issues:
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• Highly accurate clocks are large, expensive, and not well suited to
a handheld navigation devices. Timing on board the GPS satellites
is maintained by expensive caesium beam (atomic) clocks, accurate
to 2 or 3 parts in 1014, approximately one second per million years.
A typical receiver might use a quartz crystal-based clock sufficiently
accurate only over periods of seconds.

• Identical clocks that are moving relative to each other keep time at
different rates. This counter-intuitive behaviour is described by the
special theory of relativity.

• Identical clocks at different places in a gravitational field keep time at
different rates. This behaviour is described by elements of the general
theory of relativity.
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Figure 2: Two main relativistic effects. Gravitational potential and relative
motion differences compete to give a net 39µs/day gain of the satellite clock
over ground clocks.

The following discussion analyses the two main effects of relativity theory
on the time keeping of GPS satellites (Figure 2). Time keeping will be
compared to a notional clock that is inertial with respect to the centre of
the Earth rather than a clock on the Earth’s rotating surface. This reference
frame is called the Earth-centred, Earth-fixed (ECEF) frame in GPS. Clocks
on the Earth’s rotating surface also differ in timekeeping from this notional
clock, and this effect will be addressed later.

Classical physics tells that there are frequency changing effects as the
result of relative motion. The effects are familiar as the change in pitch of
siren as it passes, called the Doppler shift. In order to stay in orbit GPS
satellites must maintain an orbital velocity of: Vs =

√
GM/r = 3863 m/s,

so these effects apply. Special relativity modified the classical Doppler shift
equation to account for speeds that are a substantial fraction of the speed
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of light; the first-order Doppler shift. Einstein also identified a second-
order Doppler shift induced by relativistic time dilation. The accuracy of
the relativistic Doppler equation over its classic counterpart was first shown
experimentally by Ives and Stillwell in 1938 [3]. The relativistic Doppler
equation, expressed as fractional frequency change, has the form:

∆f
f

=
1

γ(1− β cos θ)
− 1

where β = v/c and γ = 1/
√

1− β2 is the Lorentz factor. The angle θ is
that measured at the satellite between the velocity vector of the satellite
and the observer. In the case of a notional inertial observer at the Earth’s
surface and circular orbits the shifts as a result of radial velocity component
are symmetrical approaching versus receding, variable from place to place,
and can only reasonably be accounted for by the receiver. The discussion is
therefore limited to Doppler components that are fixed. When θ = 90◦ the
equation collapses to:

∆f
f

=
1
γ
− 1 (1)

which is the second-order, or transverse, Doppler shift. We therefore act as
if θ is always ninety degrees and only consider the fixed second order effect.
For our GPS system the second-order Doppler term is:

∆f
f

=
1
γ
− 1

=
1

1/
√

1− (3863/3× 108)2
− 1

= −8.3× 10−11

This fractional frequency difference amounts to 7.2µs per day in time keep-
ing. The negative sign indicates that the satellite lags behind the inertial
clock.

Einstein’s general theory of relativity predicts the existence of time al-
tering effects related to the position of clocks at different places in a grav-
itational field. Pound, Rebka, and Snyder [4, 5] confirmed the existence
of such effects over short distances in the early 1960’s. Our GPS satellites
are in a much weaker gravitational field than a ground or aircraft-based
receiver, therefore must consider gravitational time dilation effects. A first
order approximation of frequency shift induced by gravity is given by [2]:

∆f
f

=
Φ1 − Φ2

c2

where Φ1 = −GM/r1 is the gravitational potential at the point of emission,
Φ2 at the point of reception, and positive ∆Φ denotes red-shift. For GPS:
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Φ1 ' −14923000 Nm/kg and Φ2 ' −62538000 Nm/kg (assuming sea level)
and therefore the fractional frequency change is ∆f/f = 5.3 × 10−10. This
frequency change amounts to 45.8µs per day difference in time keeping be-
tween the satellite and Earth. The satellite clock leads the inertial clock
because the number is positive.

The combination of the gravitational and relative motion effects on time
keeping is:

∆f
f

=
(

∆f
f

)
grav

+
(

∆f
f

)
motion

= 5.3× 10−10 +−8.3× 10−11

= 4.5× 10−10

The satellite clock beats faster than the inertial clock by an amount equiv-
alent to 38.6µs per day. If left unchecked, this difference would amount to
a positional error of nearly 12 kilometres after just one day, which is clearly
unacceptable.

One approach to countering these time altering effects is to build cor-
rections into the algorithm used by receivers to calculate position. Alter-
natively, the satellite clock can be adjusted so that it beats more slowly to
counteract the frequency change induced by the time altering trip to Earth.
The slower rate can be adjusted so that the received clock signal beats at
the same rate as a ground-based clock and therefore stays in synchronisa-
tion over longer periods. The latter option is the one adopted by the GPS;
receiver corrections would be complex and increase the receiver cost, while
adjusting the clock rate is relatively trivial. The GPS clock signal rates are
10.23 MHz and 1.023 MHz, although the rates are ultimately arbitrary, so
the clock rate on the satellite has been adjusted to:

(1− 4.5× 10−10)× 10.23 MHz = 10, 229, 999.9954 Hz

on the satellite in order to achieve desired rates at the ground.
At this point we have a theory of operation and a set of corrections

applied to the clock systems of the satellite reference points in order to
improve time synchronisation. The following section describes the operation
of a typical receiver.

GPS Receiver

The GPS receiver has a number of tasks to achieve before a locational fix
can be achieved:

• Identify the visible GPS reference satellites and determine their current
location.
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• Detect and synchronise with the signals from those satellites.

• Calculate the approximate distance to each satellite.

• Calculate and apply a time correction to its local clock if necessary.

• Calculate a corrected distance to each satellite and translate that to a
location on or near the Earth’s surface.

Each of these steps will be discussed in turn.
A basic almanac of satellite orbital information, built into the receiver,

is sufficient to determine satellite visibility at any given time. The accuracy
with which can be achieved is limited by the accuracy of orbital information
in the face unpredictable external effects such a gravitational perturbations,
solar winds etc. A series of ground monitoring stations track the satellites
and calculate precise orbital characteristics which are periodically up-linked
to the GPS satellites. The GPS satellites broadcast updates to the almanac
to correct for any external variability and for satellite constellation changes.
The receiver uses the updates, and may store them when powered down,
to locate the satellites very precisely. This precise location provides the
reference points necessary for triangulation.

Having identified the visible satellites, the receiver must acquire the sig-
nal from each satellite. All GPS satellites broadcast on the same carrier
frequencies (1575.42 and 1227.60 MHz [6]). The receive frequency is slightly
different due to the radial Doppler effects discussed earlier, allowing a de-
gree of separation between satellites. The publicly accessible timing signal, a
1.023 MHz 1023-bit pseudo-random number (PRN) sequence lasting exactly
one millisecond, is extracted from the identified carriers. The sequence is
unique to each satellite and allows positive identification and lock-on to the
signal.

The receiver must calculate time of flight for each acquired signal. In
practise this is achieved by the receiver generating the expected PRN sig-
nal synchronised to the receiver clock and delaying it until it aligns with
the incoming signal, the delay equalling the time of flight. This process is
repeated for each visible satellite. The receiver now has a pseudo-range to
each satellite based on the assumption that the receiver clock is correct. At
least three pseudo-ranges are require to fix location and the receiver chooses
the satellites that give the widest angular separations in order to maximise
precision.

The assumption that the handheld receiver clock is accurate is generally a
poor one. The typical quartz crystal clock would only be sufficiently accurate
over periods on the order of 5 seconds [7]. Conveniently, four satellite ranges
can be used to correct for any misalignment of the less accurate hand-held
receiver clock. If the receiver clock is not aligned with the satellites then the
fourth range measurement will not intersect with the three measurements
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used to determine location and the receiver can therefore recognise that it
is misaligned. The receiver can then look for a common clock correction
that will make all four distance measurements coincide at a single point.
Having found such a correction, the GPS receiver can adjust its clock, but
will continue to monitor for further drift with each position fix.

With satellite orbital data, corrected clock, and pseudo-range informa-
tion the receiver can perform the necessary mathematics to locate the re-
ceiver in the ECEF frame. Manipulation is required to convert this to the
Earth’s surface.

Corrections and Complications

There remain a series of corrections that can be made to the basic system
in order to improve accuracy. These corrections are discussed below in no
particular order.

Time-of-flight calculations are affected by atmospheric and ionospheric
refraction. These effects are modelled and the necessary correction factors
are distributed through the satellite system to receivers using low data-
rate navigation data set superimposed on the PRN signal. The navigation
data include updates to the almanac and time offsets particular to the each
satellite, among other things. These updates are used in refining the receiver
performance.

The foregoing discussion make the assumption that GPS satellite orbits
are circular and invariant. Achieving such an orbit is not possible in practise,
consequently the orbits may be slightly non-circular and move over time.
The introduction of eccentricity, up to e = 0.02, into the orbit of a satellite
serves to complicate the calculation of both gravitational and transverse
Doppler frequency shifts. In an eccentric orbit the altitude and velocity
varies from apogee, minimum velocity, to perigee, maximum velocity. While
the correction is not substantial, it is included in the almanac and associated
algorithms.

Manoeuvring satellites, to swap a failed one out for example, also causes
variation in timekeeping by virtue of the accelerations involved. These
changes should be monitored and the affected satellites adjusted back into
line with their peers before going into service.

The synchronisation of clocks in GPS satellites, and among the ground
monitor stations and receivers, is vitally important. These clocks can be
synchronised by light-speed signalling between them, but the Earth’s rota-
tion must be considered. Relativity theory predicts that signals travelling
with the rotation, where the receiver is moving away from the signal, must
travel further to reach their destination and therefore arrive later than ex-
pected on distance alone. Conversely, for signals travelling westward, where
the receiver is moving toward the signal, the signals arrive earlier than ex-
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pected. This is called the Sagnac effect after Georges Sagnac performed the
original experiment in 1913. The effect was also demonstrated by Hafele
and Keating in 1971 [8, 9] while testing time dilation using atomic clocks
circumnavigating the globe in opposite directions, and is vital in the opera-
tion of laser ring gyroscopes. Ignoring the effect, which amounts to 207.6 ns
[10] for a single equatorial circumnavigation, could lead to serious differences
between clocks.

As a result of the Earth’s rotation, ground-based clocks are also in mo-
tion with respect to the ECEF clock and therefore keep time differently.
The maximum velocity a ground-based clock will have is the Earth’s rota-
tional velocity at the equator, approximately 465ms−1. Equation 1 evaluates
to: ∆f/f = −1.2 × 10−12. This effect is two orders of magnitude smaller
than that applicable to the satellites, and amounts to 104 ns or 31 m per
day. Given that this is the maximum possible effect, and that time can be
corrected from satellite fixes, this contribution may be ignored.

More complex analysis done by Neil Ashby [10] on the effects of rel-
ativity in the GPS indicate that other gravitational effects are worthy of
consideration. The Earth is not spherically symmetrical and thus possesses
a non-zero gravitational quadrupole moment. The moment describes the
non-uniformity of mass distribution and is mainly due to the oblate nature
of the Earth. Analysis including the Earth’s quadrupole moment will not be
addressed quantitatively here, except to say that its contribution does not
change the scale of the gravitational effects discussed earlier.

The general theory of relativity models gravitation as a curvature of
space-time. In this model the flight path of the satellite-Earth down-link
signal follows a geodesic (shortest) path through space-time which may not
be a straight line from the point of view of the receiver. The effect is small for
Earth, but may become more significant in future, more accurate, navigation
systems.

Implementations

This project has, in general, discussed global positioning using the exist-
ing US DoD GPS as the working example. The USSR launched its own
global system called GLONASS because it could not rely on the US military
controlled GPS. The European Space Agency intends launching the Galileo
navigation system in the coming years. Galileo will inter-operate with both
GLONASS and GPS systems and, crucially, not be controlled by military
interests so that better accuracy is achievable by all users.

All these systems have around different design choices. However, regard-
less of the precise implementation, all such systems must account for the
effects of relativity in their systems.
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Conclusion

The implementation of a global positioning system is simple in theory but
complicated in practise. Using satellites for reference points and the time
of flight for light-speed signals as a measurement tactic means that several
facets of relativity theory must be accounted for. The satellite clocks runs
slower than their Earth-based counterparts because of relative motion. How-
ever, the slowing due to motion is countered by a rate increase induced by
a weaker gravitational field at satellite altitude. The combination of these
effects is faster timekeeping at the satellite, which must be counteracted if
accurate synchronisation is to be maintained. The GPS does this by delib-
erately running the satellite clocks slower so that the received signal, at the
ground, is keeping correct time. Synchronisation between satellites must be
maintained and, in doing so, the Sagnac effect must be accounted for. The
satellite positions and corrections for atmospheric effects must be well known
to the receiver, and this is accomplished using data transmitted through the
satellite system itself. Future, more accurate, systems may require incorpo-
ration of corrections for the curvature of space-time in the Earth’s vicinity
and the quadrupole moment of the Earth. The GPS is an excellent example
of relativity at work.
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